Animal models for hormone-dependent human breast cancer

Relationship between steroid receptor profiles in canine and feline mammary tumors and survival rate

Pierre M. Martin¹, Marie Cotard², Jean-Paul Mialot³, François André⁴, and Jean-Pierre Raynaud²

- ¹ Laboratoire de Cancérologie Expérimentale, Faculté de Médecine Nord, F-13326 Marseille
- ² Roussel Uclaf, 35, bd des Invalides, F-75007 Paris, France
- ³ Ecole Nationale Vétérinaire, F-94704 Maisons-Alfort, France
- ⁴ Ecole Nationale Vétérinaire, F-44026 Nantes, France

Summary. The present study shows that canine and feline mammary tumors, like human breast tumors, can be polyreceptive, i.e., they can contain estrogen (ER), progestin (PR), androgen, glucocorticoid, and/or mineralocorticoid cytosol receptors. Furthermore, a follow-up of 45 bitches with mammary carcinoma has indicated that the survival rate is significantly higher in animals with receptor-rich (ER and/or PR) tumors. This indicates that these canine mammary tumors should be evaluated further for their suitability as an animal model for hormone-dependent human breast carcinoma.

Introduction

It is now a well-established observation that patients with estrogen and, in particular, progestin receptor-positive malignant breast tumors have a higher survival rate and, in addition, are likely to respond favorably to hormone therapy [1, 6, 17, 25]. As a means of testing the efficacy of new drugs and treatment schedules, it would be very useful to have a good animal model with etiology and response characteristics similar to the human disease. In this respect, canine mammary tumors are intriguing; as in the human, mammary tumors in dogs are spontaneous (tumor material is readily available as the incidence of mammary tumors is three times higher in bitches than in women); the predominant malignant histological cell type is, as in humans, the adenocarcinoma; and the canine disease metastasizes similarly and evolves rapidly. Moreover, previous studies have shown that canine mammary tumors may contain cytosol estrogen (ER) and progestin (PR) receptors with an incidence comparable to that in humans [5, 18, 28]. A further report has established the presence of androgen receptors [8], but to our knowledge no studies of either glucocorticoid or mineralocorticoid cytosol receptors have been performed.

Mammary carcinoma is somewhat less frequent in cats than in dogs [9] but its histologic features are more similar to those of human carcinoma than are those of either murine or canine mammary carcinoma [23]. Although intact female cats have a seven-fold higher relative risk of developing mammary cancer than neutered females [9, 14], suggesting some involvement of steroid hormones, feline mammary carcinoma is generally regarded as a model for cancers less likely to respond to hormone manipulation [14, 23]. Estrogen receptor was detected in only two of 20 feline mammary carcinomas in one study [12] and in zero of 40 samples in another [23]. Two

more recent studies [10, 16] have identified the presence of progestin receptors but not of either estrogen or androgen receptors.

In this paper, we present a more comprehensive analysis of steroid receptors in canine and feline mammary tumors, and we report that the canine tumors show greater polyreceptivity than the feline tumors. In addition, we provide evidence that in the bitch, as in humans, survival rate is enhanced in cases with receptor-rich tumors. This constitutes an argument for considering further canine mammary tumors as an animal model for human hormone-dependent breast cancer.

Materials and methods

Experimental animals. Receptor profiles were determined in 28 bitches of various breeds and 11 female cats (10 mongrels and 1 persian) with mammary tumors undergoing mastectomy at the Veterinary Clinic in Maisons-Alfort (France). Fractions of tumors were collected during surgery, trimmed of fat and connective tissue, and divided into two parts (5:1 ratio). The larger part was immediately frozen in liquid nitrogen for subsequent receptor assay within 4 weeks of removal; the remainder was stored in Bouin solution for histological examination according to the WHO classification [13].

Cytosol steroid receptor assays. The frozen tumor specimens were powdered in a high-pressure tissue pulverizer, weighed, and homogenized at low speed in 5 vol. (v/w) of ice-cold GTEM buffer (10 mM Tris-HCl, pH 7.6, containing 12 mM α -monothioglycerol, 1 mM EDTA, and 10% glycerol v/v) in a P10 Polytron homogenizer (three or four pulses of 4 s each). Cytosol was prepared by centrifuging the homogenates at 110,000 g for 60 min at 2° C.

Estrogen (ER), progestin (PR), androgen (AR), gluco-corticoid (GR), and mineralocorticoid (MR) cytosol receptors were assayed according to published methods [20, 22, 26] as shown in Table 1^1 . Aliquots (0.1 ml) of cytosol (2 mg/ml) were incubated with increasing radioligand concentrations. Stabilization of the PR, GR, and MR receptors was achieved by adding 20 mM sodium molybdate to the incubation buffer. A

¹ Moxestrol (R 2858): 11β -methoxy-19-nor- 17α -pregna-1,3,5(10) trien-20-yne-3,17 β -diol; promegestone (R 5020): 17α ,21-dimethyl-19-nor-pregna-4,9-diene-3,20-dione; metribolone (R 1881): 17β -hydroxy- 17α -methyl-4,9,11-estratrien-3-one); RU 26988: 11β ,17 β -dihydroxy- 17α -(1-propionyl) androsta-1,4,6-trien-3-one

Table 1. Steroid receptor assay methodology

Receptor	Radioligand ^a	Buffer ^b	Cold competitor	Incubation conditions
ER	(11-methoxy- ³ H)-Moxestrol s.a. ~ 85 Ci/mmol	GTEM	-	5 h at 25° C and overnight at 0° C
PR	(17 α -methyl- ³ H)-Promegestone s.a. \sim 85 Ci/mmol	GTEM + 20 mM sodium molybdate	500 excess cortisol	Overnight at 0° C
AR	(17 α -methyl- ³ H)-Metribolone s.a. ~ 85 Ci/mmol	GTEM	500 excess triamcinolone acetonide	Overnight at 10° C
GR	(6,7- ³ H)-Dexamethasone s.a. 30-50 Ci/mmol	GTEM + 20 mM sodium molybdate	_	3 h at 20° C and overnight at 0° C
MR	(1,2,6,7- ³ H)-Aldosterone s.a. 80-105 Ci/mmol	GTEM + 20 mM sodium molybdate	200 excess RU 26988	3 h at 20° C and overnight at 0° C

^a All radioligands were purchased from New England Nuclear (Boston, Mass.)

500-fold excess of triamcinolone acetonide was added to the (3H)-metribolone to ensure that only androgen binding was measured [27] and a 200-fold excess of a pure glucocorticoid, RU 26988, to the (3H)-aldosterone to eliminate any interference from GR binding in the measurement of MR [22, 27]. The buffers did not contain protease inhibitors although recent experience from our laboratory has suggested that the proteolytic activity in canine mammary tumor cytosol is greater than in human breast tumor cytosol. Although none of the radioligands used binds with high affinity to specific plasma proteins such as corticosteroid and testosterone binding globulins [26], which could contaminate dog and cat cytosol preparations [7, 11, 30, 32], the possibility of residual plasma binding was eliminated by adding a 500-fold excess of cortisol to the PR buffer and of estrone to the AR buffer. Non-specific binding was evaluated by the addition of a 100-fold excess of the corresponding non-radiolabeled ligand.

The incubated cytosol was stirred for 25 min at 4° C with 0.5 ml Dextran-coated charcoal (DCC) suspension (0.5% charcoal Norit A (Sigma), 0.05% Dextran T.70 (Pharmacia) plus 0.28% gelatin for cytosols containing < 1 mg/ml protein in GTEM buffer, and centrifuged for 10 min at 300 g. Bound labeled steroid was determined by counting the radioactivity in an aliquot of supernatant, and the concentration of specific binding sites was estimated from a Scatchard plot. The amount of cytosol available was not always sufficient to perform all five receptor assays in triplicate. In some instances, therefore, GR and MR were not assayed.

Survival rate. Survival rate was estimated in a series of 45 untreated dogs with malignant tumors which had been previously tested for ER and PR [28]. A cut-off value of 10 fmol/mg protein was used to divide tumors into receptor-rich and receptor-poor categories by analogy with human tumors.

Results

Tumor polyreceptivity

Table 2 gives the receptor concentrations recorded in 19 malignant and nine benign canine mammary tumors. Since a

previous study [28] has shown that no significant difference is recorded in the incidence of estrogen (ER) and progestin (PR) receptors according to breed, age, and number of pregnancies or pseudopregnancies, no information relating to the clinical history of the bitches is given. The results confirm the presence of ER and PR, although this incidence was lower than that previously recorded [5, 28]. Only 11 out of a total of 28 tumors (39%) were either ER⁺ and/or PR⁺ on the basis of a cut-off value of 10 fmol/mg protein. This discrepancy with previous results (65%) may be explained by the size of the experimental sample, which was too small to be truly representative of the overall population. However, if only adenocarcinomas, the most frequent malignant tumor, are taken into consideration, the rate of ER and/or PR positivity recorded here (7 of 13 = 54%) corroborates previous data (58%). Malignant tumors in fact represented 65% of the overall sample, and two-thirds of these were adenocarcinomas, which constituted the most receptor-rich category. None of the four solid carcinomas nor the fibrosarcoma was receptor-positive. Among the benign tumors, one adenoma, one mixed tumor, and the single case of lobular hyperplasia were receptor-positive.

Our results also support previous evidence [8] for the presence of a cytosol androgen receptor in some tumors. The incidence was low, as in humans [2, 3, 31]. Only four of 28 tumors could be considered AR⁺. The AR values tended to be highest in tumors with high ER and PR values.

In cases (14 of 28) where enough cytosol was available to perform simultaneous corticoid receptor assays, it was noted that except in one instance (B67), the GR and MR levels recorded were at the limit of detection and probably of minor significance considering the imprecision of the assay technique in this low concentration range.

Table 3 gives the results obtained for feline mammary tumor cytosol. These show the presence of ER and/or PR in substantial amounts in two malignant tumors (one adenocarcinoma and one solid carcinoma) and in two benign tumors (one adenoma and one lobular hyperplasia). Surprisingly, the highest PR value (tumor no. 64) was found in an adenocarcinoma containing no detectable cytosolic ER. This is in agreement with the results of Johnston et al. [16], who report that none of the seven cytosols they tested had detectable ER,

b GTEM = 10 mM Tris-HCl pH 7.6, containing 12 mM α-monothioglycerol, 1 mM EDTA, and 10% glycerol v/v

Table 2. Receptor profiles in mammary tumors of dogs

		Receptor concentration (fmol/mg protein)				
		ER	PR	AR	GR	MR
Maligna	ant tumors $(n = 19)$					
B 46 B 53 B 54 B 66 B 70 B 73 B 47 B 59 B 62 B 64 B 67 B 77 B 48 B 50 B 52 B 60	Adenocarcinoma ^b Adenocarcinoma ^c Solid carcinoma	3 5 38 4 4 23 14 21 3 3 14 2 10 5 0 2	1 6 22 5 3 35 18 30 6 3 2 10 7 6 1 2	6 6 13 5 9 18 13 8 3 5 5 3 2 4 1 3	3 3 1 ND ND ND 1 2 ND 12 ND 2 0 2	3 3 1 ND ND ND ND 1 2 ND 12 ND ND 2 0 2
B 65 J B 61 B 85	Fibrosarcoma Carcinosarcoma	0 0 21	6 0 5	2 0 7	2 0 ND	2 0 ND
B 56 B 80 B 55 B	tumors $(n = 9)$ Adenoma	8 4 5	11 8 2 7	14 4 2 3	2 ND 2 1	2 ND 2 1
B 57 B 58 B 69 B 82 B 83 B 79	Benign mixed tumor Lobular hyperplasia	9 8 3 9 9	7 17 3 5 7	3 9 3 4 5 7	ND ND ND ND ND	ND ND ND ND ND

ER, estrogen receptor; PR, progestin receptor; AR, androgen receptor; GR, glucocorticoid receptor; MR, mineralocorticoid receptor

ND, not determined on account of limited amount of cytosol available

- a Tubular, simple type
- b Tubular, complex type
- ^c Papillary, simple type

whereas all contained PR. These authors suggest that feline mammary adenocarcinoma may be representative of the small group of ER⁻PR⁺ human mammary tumors. However, the case may be otherwise for solid carcinomas (tumor B78 was ER⁺PR⁻) and for benign tumors and dysplasia, which contained some ER.

The hormonal pathogenesis (hyperprogesteronism) of benign fibroglandular proliferations of the mammary gland in the cat has already been reported; these growths regress following ovariectomy [4, 15]. Three adenocarcinomas, all ER⁻PR⁻, were nevertheless AR⁺, a result rather different from that recorded in dogs. The ER⁺PR⁺ benign tumor was also AR⁺. In only one instance (B51) could corticoid receptors be assayed. This tumor, which was rich in AR but low in ER and PR, was found to contain equivalent and significant amounts of both GR and MR (6 fmol/mg protein).

Table 3. Receptor profiles in mammary tumors of cats

		Receptor concentration (fmol/mg protein)			
		ER	PR	AR	
Malign	ant tumors $(n = 9)$				
B 18 B 21 B 51 64 B 74 B 76 B 86 B 44 B 78	Adenocarcinoma (tubular, simple type) Solid carcinoma	1 1 3 0 0.5 4.5 1.5 3	4 0 0.5 28 4 1.5 3 0.5	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
Benign	tumors and dysplasia $(n = 2)$				
B 81 B 87	Adenoma Lobular hyperplasia	3 <u>1</u> 5	18 26	13 3	

ND, not determined on account of limited amount of cytosol available

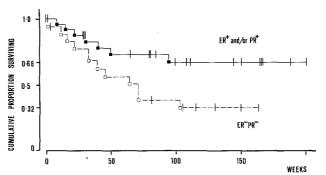


Fig. 1. Kaplan-Meier survival curves of bitches undergoing mastectomy for mammary cancer according to ER and/or PR status of the tumor ($\chi^2 = 4.18$, P < 0.05 in log rank test)

Survival rate

The 45 bitches were divided into two categories: those with ER and/or PR levels of 10 fmol/mg protein or above (25 bitches) and those with low receptor levels (20 bitches). A comparison of survival rates (Fig. 1) shows that according to a log rank test, survival was significantly higher in the receptor-rich category ($\chi^2 = 4.18$, P < 0.05).

Discussion

Chemically induced (e.g., DMBA-induced) animal tumors or viral neoplasms of inbred strains of rodents are generally non-metastatic and thus on the whole constitute unsatisfactory models for human breast carcinoma, which is spontaneous and highly metastatic. By contrast, canine mammary tumors resemble those in man insofar as they are also spontaneous (although three times more prevalent [9]) and metastatic; also, they have certain histological similarities [24] and they show an analogous incidence of steroid hormone receptor positivity [28]. The present study develops the analogy between canine and human mammary tumors further by establishing in canine tumors a low but apparently significant incidence of androgen,

mineralocorticoid and glucocorticoid receptors, as is also recorded in humans [2, 3, 22, 31], and by clearly demonstrating a higher survival rate with receptor-rich tumors, as is known to be the case in humans [1, 6, 17, 19, 25]. Thus, in dogs and in humans, the assay of ER and particularly of PR [19] constitutes a rapid and simple method of establishing a prognosis, since their presence is related to the degree of differentiation of the tumor and its histoprognostic grade regardless of histological type [21]. Together with the assessment of lesional elastosis in humans [29], steroid receptor assays on tumor biopsies constitute an indicator of disease-free interval [19].

In humans, the presence of ER and/or PR is, in addition, a positive indicator for a favorable response to hormonal therapy and is used in patient selection. It may be that in the dog, too, hormonal therapy is most effective in animals with ER⁺ and/or PR⁺ tumors. If this proves to be the case, the canine mammary tumor might then be considered a good model for the human disease and might be used in the systematic development of new endocrine therapies that may be effective in the human.

In feline mammary carcinoma, which in its histologic features is more similar to human carcinoma than is canine carcinoma [23], the incidence of ER and PR seemed to be very low. The association of this observation with the poor prognosis of mammary carcinoma in the cat [23, 33] is very similar to the situation in the human when receptor levels are low [19]. A relatively high proportion of cat tumors contained androgen receptor. Should this incidence be confirmed in a larger sample reflecting the overall population, it would be interesting to investigate whether the progression of feline mammary cancer might be successfully controlled by anti-androgen therapy.

Acknowledgements. We are very grateful to J. A. Katzenellenbogen for helpful discussions and to T. Ojasoo for writing the paper. This work was supported by an INSERM grant: ATP 58-78-90.

References

- Allegra JC, Lippman ME, Simon R, Thompson EB, Barlock A, Green L, Huff KK, Do HMT, Aitken S, Warren R (1979a) Association between steroid hormone receptor status and disease-free interval in breast cancer. Cancer Treat Rep 63:1271
- Allegra JC, Lippman ME, Thompson EB, Simon R, Barlock A, Green L, Huff KK, Do HMT, Aitken S (1979b) Distribution and frequency and quantitative analysis of estrogen, progesterone, androgen and glucocorticoid receptors in human breast cancer. Cancer Res 39: 1447
- Allegra JC, Lippman ME, Thompson EB, Simon R, Barlock A, Green L, Huff KK, Do HMT, Aitken SC, Warren R (1979c) Relationship between the progesterone, androgen, and glucocorticoid receptor and response rate to endocrine therapy in metastatic breast cancer. Cancer Res 39: 1973
- 4. Allen HL (1973) Feline mammary hypertrophy. Vet Pathol 10:501
- André F, Bouton MM, Cotard M, Martin PM, Mialot JP, Secchi J, Raynaud JP (1979) Canine mammary tumors: An experimental model for the study of the hormone dependence of mammary carcinoma. Cancer Treat Rep 63: 1169
- Cooke T, George D, Shields R, Maynard P, Griffiths K (1979)
 Oestrogen receptors and prognosis in early breast cancer. Lancet
 1.995
- 7. Corvol P, Bardin WC (1973) Species distribution of testosterone-binding globulin. Biol Reprod 8:277
- 8. D'Arville CN, Pierrepoint CG (1979) The demonstration of oestrogen, androgen and progestagen receptors in the cytosol fraction of canine mammary tumors. Eur J Cancer 15: 875

- Dorn CR, Taylor DON, Schneider R, Hibbard HH, Klauber MR (1968) Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County. J Natl Cancer Inst 40: 307
- Elling H, Ungemach FR (1981) Progesterone receptors in feline mammary cancer cytosol. J Cancer Res Clin Oncol 100: 325
- 11. Gill GV, Cook DB (1975) Binding of dexamethasone to canine corticosteroid binding globulin. Clin Chim Acta 63: 231
- 12. Hamilton JM, Else RW, Forshaw P (1976) Oestrogen receptors in feline mammary carcinomas. Vet Rec 99:477
- 13. Hampe JF, Misdorp W (1974) Tumors and dysplasia of the mammary glands. Bull WHO 50: 113
- Hayes HM Jr, Milne KL, Mandell CP (1981) Epidemiological features of feline mammary carcinoma. Vet Rec 108: 476
- Hinton M, Gaskell CJ (1977) Non-neoplastic mammary hypertrophy in the cat associated either with pregnancy or with oral progestagen therapy. Vet Rec 100: 277
- Johnston SD, Hayden DW, Johnson KH, Handschin B, Theologides A, Xiang DT (1982) Progesterone receptors in spontaneously occurring feline mammary adenocarcinomas. (Abstract of 73rd Ann Meeting Amer Ass) Cancer Res 23:238, nº 939
- Knight WA, Livingstone RB, Gregory EJ, McGuire WL (1977) Estrogen receptor as an independent prognostic factor in breast cancer. Cancer Res 37: 4669
- MacEwen EG, Patnaik AK, Harvey HJ, Panko WB (1982) Estrogen receptors in canine mammary tumors. Cancer Res 42: 2255
- Magdelenat H, Pouillart P, Jouve M, Palangié T, Garcia-Giralt E, Bretaudeau B, Asselain B (1982) Progesterone receptor as a more reliable prognostic parameter than estrogen receptor in patients with advanced breast cancer. Breast Cancer Research and Treatment 2:195
- Martin PM, Rolland PH, Jacquemier J, Rolland AM, Toga M (1978) Multiple steroid receptors in human breast cancer. I. Technological features. Biomedicine 28:278
- 21. Martin PM, Rolland PH, Jacquemier J, Rolland AM, Toga M (1979) Multiple steroid receptors in human breast cancer. III. Relationship between steroid receptors and the state of differentiation and the activity of carcinomas throughout the pathologic features. Cancer Chemother Pharmacol 2:115
- Martin PM, Rolland PH, Raynaud JP (1981) Macromolecular binding of dexamethasone as evidence for the presence of mineralocorticoid receptor in human breast cancer. Cancer Res 41:1222
- Misdorp W, Weijer K (1980) Animal model of human disease.
 Breast cancer. Animal model: Feline mammary carcinoma. Am J Pathol 98: 573
- Owen LN (1979) A comparative study of canine and human breast cancer. Invest Cell Pathol 2: 257
- 25. Pichon MF, Pallud C, Brunet M, Milgrom E (1980) Relationship of presence of progesterone receptors to prognosis in early breast cancer. Cancer Res 40: 3357
- Raynaud JP, Ojasoo T, Vaché V (1979) Unusual steroids in measuring steroid receptors. In: Thompson EB, Lippman ME (eds) Steroid receptors and the management of cancer, vol 1. CRC Press, Boca Raton, p 215
- Raynaud JP, Bouton MM, Moguilewsky M, Ojasoo T, Philibert D, Beck G, Labrie F, Mornon JP (1980) Steroid hormone receptors and pharmacology. J Steroid Biochem 12:143
- Raynaud JP, Cotard M, André F, Mialot JP, Rolland PH, Martin PM (1981) Spontaneous canine mammary tumors. A model for human endocrine therapy. J Steroid Biochem 15:201
- Rolland PH, Jacquemier J, Martin PM (1980) Histological differentiation in human breast cancer is related to steroid receptors and stromal elastosis. Cancer Chemother Pharmacol 5:73
- Tabei T, Mickelson KE, Neuhaus S, Petra PH (1978) Sex steroid binding protein (SBP) in dog plasma. J Steroid Biochem 9:983

- 31. Trams G, Maass H (1977) Specific binding of estradiol and dihydrotestosterone in human mammary cancers. Cancer Res 37:258
- 32. Verhage HG, Akbar M, Jaffe RC (1979) Cytosol and nuclear progesterone receptor in cat uterus and oviduct. J Steroid Biochem 11:1121
- 33. Weijer K, Head KW, Misdorp W, Hampe JF (1972) Feline malignant mammary tumors. I. Morphology and biology: Some comparisons with human and canine mammary carcinomas. J Natl Cancer Inst 49: 1967

Received April 6, 1983/Accepted August 11, 1983